Долговременная высотная адаптация

Материал из Wiki.risk.ru
Версия от 14:51, 20 января 2009; Leb (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Поэтому в дальнейшем в организме включаются механизмы долговременной адаптации, стратегия которой сводится к смещению основного поля деятельности с механизмов транспорта на механизмы утилизации кислорода, на повышение экономичности использования ресурсов, имеющихся в распоряжении организма. Долговременная адаптация – это уже структурные перестройки в организме, связанные со стимуляцией биосинтетических процессов в системах транспорта, регуляции и энергообеспечения, что увеличивает их структурный потенциал и резерв­ную мощность. Условно характер структурных изменений можно представить следующим образом: Системы организма Характер структурных перестроек в организме Транспортные - разрастание сосудистой сети (ангиогенез) в легких, сердце, голо­вном мозге; - рост легочной ткани; - увеличение количе­ства эритроцитов в крови (эритропоэз) Регуляторные - увеличение активности фермен­тов, ответственных за синтез медиаторов и гормонов; - увеличение числа рецепторов к ним в тканях Энергообеспечения - увеличение числа митохондрий и ферментов окисления и фосфорилирования; - синтез гликолитических ферментов

Разрастание сосудистой сети сердца и головного мозга создает дополнительные резервы для снабжения этих органов кислородом и энергетическими ресурсами. Увеличение емкости сосудистого русла снижает его общее сопротивление. Рост сосудистой сети в легких в сочетании с увеличением диффузионной поверхности легочной ткани обеспечивает возможность повышения газообмена. Ключевую роль в индукции эритропоэза, ангиогенеза и гликолиза играет железосодержащий белок HIF-1 (Hypoxia inducible factor), активирующийся при гипоксии [3]. Кривые диссоциации оксигемоглобина у обиталей высокогорья викуньи и ламы Кривые поглощения и отдачи кислорода гемоглобином животных высокогорья

Система крови претерпевает комплекс изменений. Общеизвестно, что на этапе долговременной акклиматизации растет число эритроцитов и содержание в них гемоглобина, повышающих кислородную емкость крови (сухое вещество эритроцита содержит до 95% гемоглобина). Повышение концентрации эритроцитов начинается со 2-3 дня и может возрастать на 40-50% к 4-й неделе пребывания в горах (доходит до 8 млн/мм3, в то время как у жителей равнины их 4,5-5 млн/мм3). Это обусловлено увеличением секреции гормонов — эритропоэтинов в красном костном мозге. Менее известно, что на этапе долговременной адаптации, помимо типичного взрослого гемоглобина (HbА) появляется эмбриональный гемоглобин (HbF), способный присоединять О2 при более низком парциальном давлении кислорода в альвеолярном воздухе (рис.2): молодые эритроциты обладают более высоким уровнем энергообмена [4]. Да и сами молодые эритроциты имеют несколько измененную структуру, диаметр их меньше, облегчая прохождение по капиллярам. Об изменении качества самих эритроцитах говорит и повышение содержание 2,3-дифосфоглицерата (2,3-ДФГ), способствующего освобождению кисло­рода из комплекса с гемоглобином в тканях (установлено, что концентрация 2,3-ДФГ в эритроцитах у спортсменов, тренирующих выносливость, на 15-20% выше, чем у не спортсменов). Высокогорная адаптация вызывает также рост лейкоцитов, максимум которых (+40%) достигается примерно к 40-му дню пребывания в горах.

Увеличение кислородной емкости крови дополняется повышением концентрации в миокарде и скелетных мышцах мы­шечного белка - миоглобина (Мb), способного переносить кислород в зоне более низкого парциального давления, чем гемоглобин. Увеличение мощности гликолиза в во всех тканях в процессе длительной адаптации к гипоксии оправдано энергетически, требует меньше кислорода. Поэтому начинает расти активность ферментов, расщепляющих глюкозу и гликоген, появляются новые изоформы ферментов, более соответствующие анаэробным условиям, увеличиваются запасы гликогена. Опасность сдвига pH при усилении анаэробного гликолиза предотвращается увеличением щелочного резерва крови. На этом этапе акклиматизации возрастает экономичность функцио­нирования тканей и органов, что достигается повышением числа митохондрий на единицу массы миокарда, возрастанием активности митохондриальных ферментов и скорости фосфорилирования и, как следствие, — большим выходом АТФ на единицу субстрата при одном и том же уровне потребления кислорода. В итоге увеличивается способность сердца к извлечению и использованию кислорода из протекающей крови при его низких концентрациях. Это позволяет ослабить нагрузку на транспортные системы: снижаются частота дыхания и сердцебиения, уменьшается минутный объем сердца. На высоте 3800 м ткани горца извлекают 10,2 мл О2 из каждых 100 мл крови против 6,5 мл у приехавшего в горы молодого здорового жителя равнин; на 4350 м коронарный кровоток и потребление О2 горцев на 30% экономичнее. У горцев увеличена и масса циркулирующей крови, что обусловливает возрастание ее дыхательной поверхности.

При длительном воздействии высотной гипоксии активируется синтез РНК и белка в различных отделах нервной системы и, в частности, в дыхательном центре, что обеспечивает возможность усиления дыхания при низких концентрациях СО2 в крови*; улучшается коорди­нация дыхания и кровообращения. Возрастает мощность гормональных звеньев и их экономичность - уровень основного обмена в процессе адаптации может снижаться. Установлено, что вторая фаза акклиматизации в целом завершается через три недели после начала прибытия в горы. Однако для больших высот и эта длительность акклиматизации может быть недостаточна [5].